Препятствия для Big Data или тавтологии в ритейле

Розница – одна из старейших платформ взаимодействия покупателя с продавцом. Ритейлеры использовали ИТ задолго до появления e-Commerce. С развитием технологий торговля перешла на другой уровень. Оборот розничной торговли в России по итогам 2017 года составил порядка 30 трлн рублей (по данным ТАСС).

Скоро сказка сказывается...

Ритейл обращается к новым нишевым технологиям, чтобы получить преимущества и повысить прибыль. Одна из таких технологий - Big Data. По данным IDC, по итогам 2017 года расходы на Big Data в мире составили почти 45 миллиардов долларов.

big_data

Розничная торговля - идеальный кандидат для применения Big Data. Эта отрасль с высокой скоростью генерирует большой объём разнообразных данных: товары, приобретаемые покупателями, различные способы оплаты, используемые тенденции при покупках, факторы принятия решений, стоимость, скидки, качество, доступность и т.д. и т.п. 

Например, WalMart генерирует
2,5 Петабайта данных в час
от транзакций с клиентами. 

Но помимо огромных возможностей для использования Big Data в ритейле, существуют и значительные препятствия, с которыми приходится сталкиваться. 

Но дело само не сделается

Важный вопрос – какие данные собирать и как? Там, где много данных, там же много и «мусора». В ритейле много данных о купленных товарах, способах оплаты, которые могут быть различными для одной покупки. Клиент может использовать для оплаты банковскую карту члена семьи или использовать карту лояльности другого человека. Необходимо правильно идентифицировать человека и правильно сегментировать его поведение.

big_data

Даже у небольшой розницы сегодня есть программное обеспечение для складского учёта, бухгалтерского учёта, POS и если есть CRM. Каждая система хранит данные в определённом формате. Довольно сложная задача - собрать данные из этих различных систем, работающих обособленно, и объединить их для анализа с помощью ETL-процессов. При этом понимание, что это придется сделать, не отменяет проблем при реализации. 

Дружба дружбой, а служба службой

В России необходимо соблюдать 152-ФЗ о персональных данных. В Евросоюзе - GDPR. Задачи по обеспечению безопасности данных всегда актуальны. Несмотря на все принятые необходимые меры, важно также соблюдать согласие клиентов и убеждать их в том, что собранные данные будут использоваться безопасным образом.

Что касается человеческого фактора, то внедрение Big Data, как, впрочем, и других ИТ-технологий, не даст нужной отдачи, если персонал не будет правильно использовать их в своей работе.

big_data

Инструменты Big Data могут помочь извлечь, трансформировать, загрузить и сегментировать данные, чтобы выявить закономерности и тенденции. Но оперативно и правильно использовать эти данные не всегда удаётся. В ритейле тенденции и закономерности меняются особенно быстро. 

Награждение наградами награжденных

Несмотря на некоторые проблемы, возможности Big Data в ритейле огромны. Согласно исследованию HBR, компании, создавшие омниканальный сервис на основе аналитических данных, повысили стоимость акций до 8,5 раз. 

В отчете Oracle утверждается, что ритейлеры могут получить 60%-ный прирост своей операционной прибыли за счет использования больших данных. 

Для каждого вышеуказанного препятствия решение заключается в тщательной, продуманной реализации Big Data с использованием зрелых инструментов и грамотной сбалансированной команды аналитиков и разработчиков. Для нынешних продавцов аналитика больших данных - лучший способ получить представление о тайных желаниях клиента!


02 ноября 2018г. / Индустрия 4.0
171 | Обсудить в   
Еще по теме
Умная регистратура: электронной очередью по стереотипам

Умная регистратура: электронной очередью по стереотипам

Новые технологии - это далеко не всегда мгновенное признание. Часто их появление поначалу несет недоверие со стороны потребителя. В большинстве случаев автоматизация процессов является движением к новому типу более эффективных услуг, в первую очередь – экономии времени.

73
Умный город: освещение и не только

Умный город: освещение и не только

Сегодня по всему миру, а особенно в мегаполисах, городские власти стремятся к повышению качества жизни и комфортной среде для горожан. Это означает оптимизацию затрат и более эффективное расходование бюджета.

241
Дао внедрения СУЗ

Дао внедрения СУЗ

Всегда продавайте услуги по внедрению системы управления знаниями (СУЗ) как можно дороже. Гуру говорил: «То, что достается дёшево, не может цениться высоко». Заказчик, который не ставит перед собой цели повысить эффективность и улучшить свой бизнес, не должен тратить деньги на внедрение СУЗ.

75