Шесть вариантов использования Big Data в ритейле

Big Data - один из самых востребованных инструментов в ритейле.
В цифровом мире большие данные повсюду, и практически все покупатели оставляют какой-то цифровой след.

 Почти всё, что мы делаем в Интернете и в окружающем цифровом пространстве, можно анализировать и использовать для отслеживания потребительских тенденций, поведения и понимания, которые помогают продавцам связываться с покупателями на персональном уровне.

 big_data

В современной бизнес-среде идёт сближение и совмещение продаж в онлайне и оффлайне. Покупатели хотят иметь и на сайте, и в традиционном магазине одинаковый набор сервисов. Если вы нашли в интернете нужный вам товар, сравнили его с другими товарами на различных сайтах, затем в магазине «вживую» подержали в руках, а в итоге заказали в интернет-магазине – это оффлайн- или онлайн-покупка?

К клиенту лицом

Согласно недавнему исследованию в США 54% потребителей готовы прекратить  отношения с ритейлером, если они не получат выгоду от персонального контента и предложений. Чтобы дать своей целевой аудитории выигрышный персонализированный контент или предложения, адаптированные к их личным потребностям, необходимы большие данные. Большие данные предоставляют подробную информацию о покупателях, на которых нацелены предложения, и они кардинально меняют лицо ритейла.

big_data 

Рассмотрим шесть вариантов использования Big Data в ритейле

  1. Создание 360-градусного представления о клиенте. Поведение и настроение клиента можно определить с помощью анализа больших данных о клиенте. Большие данные могут связать данные транзакций, поведение в онлайне, тенденции покупок в магазине, предпочтения в товарах и т. д. Можно также подключать внешние неструктурированные потоки данных, например, из социальных сетей, для оценки настроений и поведения клиентов. Эта информация поможет ритейлеру понять как лучше взаимодействовать с клиентами и с помощью каких маркетинговых каналов.
  2. Измерение отношения к бренду. Изучение бренда с использованием фокус-групп и методов опроса клиентов может быть дорогостоящим и зачастую неточным. Используя аналитику Big Data, можно выполнить анализ настроений клиентов, основанный на поведенческих тенденциях, на основе открытых источников, таких как Instagram, Twitter, Facebook, VK и т.п. Результаты будут менее предвзятые и могут использоваться при разработке продуктов, рекламы и маркетинговых кампаний.

    big_data
  3. Создание настраиваемых рекламных акций. Анализ больших данных может использоваться для создания пользовательских предложений на основе истории просмотров и других источников данных. Эти персонализированные рекламные акции могут использоваться для направленного маркетинга, выдачи купонов и специальных предложений для пользователей смартфонов на основе их местоположения в магазинах или для онлайн-продаж с использованием специальных предложений через e-mail, интернет-рекламу или социальные сети.
  4. Мерчендайзинг. Большие данные могут использоваться для анализа передвижений и действий покупателей в магазине. Данные различных датчиков могут использоваться для отслеживания трафика и покупок в магазине.

    big_data
  5. Оптимизация интернет-магазинов. Данные о посещениях и мониторинг поведения в интернете могут помочь оптимизировать интернет-магазин. Без помощи аналитики Big Data большой объем данных о посещениях трудно анализировать. Продавцы могут включать дополнительные показатели, такие как анализ соцсетей, историю покупок и многое другое, чтобы повысить отдачу интернет-магазина.
  6. Управление заказами. Big Data могут быть неоценимы для управления запасами и цепочек поставок. Применение больших данных для планирования спроса может помочь своевременно распределить запасы и улучшить логистику, чтобы помочь получить нужные товары в нужное время и в нужном месте, а также уменьшить избыточные запасы и исключить отсутствие товаров на складе

big_data
Big Data в ритейле скоро станет нормой для поддержки принятия решений. Выбирайте, когда и как использовать этот инструмент для решения конкретных бизнес-целей.

Те бизнес-лидеры, которые успешно расширяют свои существующие хранилища и инструменты с помощью Big Data, значительно увеличивают доступность и качество информации и, следовательно, улучшают понимание ситуации и принятие решений.


21 сентября 2018г. / Индустрия 4.0
749 | Обсудить в   
Ярослав Макаров
Коммерческий директор "Аплана. Центр Разработки"
Единые правила и качество услуг. Грамотная интеграция сервисов
Один ум хорошо, а два лучше - синергия BI и BPM
Препятствия для Big Data или тавтологии в ритейле
Дао внедрения СУЗ
Как установить единые правила в информационной системе и повысить качество сервисов для клиентов
Сэкономил = заработал: 6 способов снижения затрат с помощью прогнозной аналитики
7 трендов бизнес-аналитики в 2018 году
Стратегия управления бизнес-аналитикой: семь вопросов
О дивный новый мир аналитики бесстрашных клиентов!
Вредные советы (спасибо Григорию Остеру)
Что общего между системой управления знаниями и драконом из «Игры престолов»?
Управлять знаниями? Нет, управлять инновациями!
Система управления знаниями: пять первых шагов
Система управления знаниями: активный поиск и накопление
Заказная разработка – эффективный способ обойти конкурентов
Еще по теме
Зачем логистике блокчейн

Зачем логистике блокчейн

Ранее мы уже говорили о том, что технология блокчейн с самого своего появления считалась подходящей для логистики. Это мнение разделяли не только операторы грузоперевозок, но и ИТ-компании (например, IBM). Насколько оправдан такой взгляд? Разберемся.

106
Умная канцелярия. Роботы отменяют рутину

Умная канцелярия. Роботы отменяют рутину

Всем нам приходится периодически обращаться в госструктуры или коммерческие компании. Но многие ли знают о том, что их письмо может прочесть не человек, а программа-робот? И даже ответить на него?

111
Оцифровать «Почту России». Диджитал-трансформация самой традиционной компании страны

Оцифровать «Почту России». Диджитал-трансформация самой традиционной компании страны

При слове «почта» в лучшем случае представляется стопка бумажных конвертов, а в худшем — километровые очереди и потерянные посылки. Как заставить такое предприятие идти в ногу со временем, используя самые передовые технологии?

236