Препятствия для Big Data или тавтологии в ритейле

Розница – одна из старейших платформ взаимодействия покупателя с продавцом. Ритейлеры использовали ИТ задолго до появления e-Commerce. С развитием технологий торговля перешла на другой уровень. Оборот розничной торговли в России по итогам 2017 года составил порядка 30 трлн рублей (по данным ТАСС).

Скоро сказка сказывается...

Ритейл обращается к новым нишевым технологиям, чтобы получить преимущества и повысить прибыль. Одна из таких технологий - Big Data. По данным IDC, по итогам 2017 года расходы на Big Data в мире составили почти 45 миллиардов долларов.

big_data

Розничная торговля - идеальный кандидат для применения Big Data. Эта отрасль с высокой скоростью генерирует большой объём разнообразных данных: товары, приобретаемые покупателями, различные способы оплаты, используемые тенденции при покупках, факторы принятия решений, стоимость, скидки, качество, доступность и т.д. и т.п. 

Например, WalMart генерирует
2,5 Петабайта данных в час
от транзакций с клиентами. 

Но помимо огромных возможностей для использования Big Data в ритейле, существуют и значительные препятствия, с которыми приходится сталкиваться. 

Но дело само не сделается

Важный вопрос – какие данные собирать и как? Там, где много данных, там же много и «мусора». В ритейле много данных о купленных товарах, способах оплаты, которые могут быть различными для одной покупки. Клиент может использовать для оплаты банковскую карту члена семьи или использовать карту лояльности другого человека. Необходимо правильно идентифицировать человека и правильно сегментировать его поведение.

big_data

Даже у небольшой розницы сегодня есть программное обеспечение для складского учёта, бухгалтерского учёта, POS и если есть CRM. Каждая система хранит данные в определённом формате. Довольно сложная задача - собрать данные из этих различных систем, работающих обособленно, и объединить их для анализа с помощью ETL-процессов. При этом понимание, что это придется сделать, не отменяет проблем при реализации. 

Дружба дружбой, а служба службой

В России необходимо соблюдать 152-ФЗ о персональных данных. В Евросоюзе - GDPR. Задачи по обеспечению безопасности данных всегда актуальны. Несмотря на все принятые необходимые меры, важно также соблюдать согласие клиентов и убеждать их в том, что собранные данные будут использоваться безопасным образом.

Что касается человеческого фактора, то внедрение Big Data, как, впрочем, и других ИТ-технологий, не даст нужной отдачи, если персонал не будет правильно использовать их в своей работе.

big_data

Инструменты Big Data могут помочь извлечь, трансформировать, загрузить и сегментировать данные, чтобы выявить закономерности и тенденции. Но оперативно и правильно использовать эти данные не всегда удаётся. В ритейле тенденции и закономерности меняются особенно быстро. 

Награждение наградами награжденных

Несмотря на некоторые проблемы, возможности Big Data в ритейле огромны. Согласно исследованию HBR, компании, создавшие омниканальный сервис на основе аналитических данных, повысили стоимость акций до 8,5 раз. 

В отчете Oracle утверждается, что ритейлеры могут получить 60%-ный прирост своей операционной прибыли за счет использования больших данных. 

Для каждого вышеуказанного препятствия решение заключается в тщательной, продуманной реализации Big Data с использованием зрелых инструментов и грамотной сбалансированной команды аналитиков и разработчиков. Для нынешних продавцов аналитика больших данных - лучший способ получить представление о тайных желаниях клиента!


02 ноября 2018г. / Индустрия 4.0
775 | Обсудить в   
Ярослав Макаров
Директор по развитию бизнеса ГК Аплана
7 факторов успеха для внедрения управления инновациями
Решения Индустрии 4.0 - в жизнь
Что такое инновация?
5 шагов на пути к управлению инновациями
Единые правила и качество услуг. Грамотная интеграция сервисов
Один ум хорошо, а два лучше - синергия BI и BPM
Дао внедрения СУЗ
Как установить единые правила в информационной системе и повысить качество сервисов для клиентов
Шесть вариантов использования Big Data в ритейле
Сэкономил = заработал: 6 способов снижения затрат с помощью прогнозной аналитики
7 трендов бизнес-аналитики в 2018 году
Стратегия управления бизнес-аналитикой: семь вопросов
О дивный новый мир аналитики бесстрашных клиентов!
Вредные советы (спасибо Григорию Остеру)
Что общего между системой управления знаниями и драконом из «Игры престолов»?
Управлять знаниями? Нет, управлять инновациями!
Система управления знаниями: пять первых шагов
Система управления знаниями: активный поиск и накопление
Заказная разработка – эффективный способ обойти конкурентов


Еще по теме
IoT, SCADA и DCS: найдите десять отличий

IoT, SCADA и DCS: найдите десять отличий

Термин "Интернет Вещей" (IoT, Internet of Things) используется повсюду, но насколько вообще люди понимают, что это значит? Зачастую "Интернет Вещей" используют там, где более точным было бы использовать другой термин, а при попытке дать ему определение, определения получаются не очень-то совместимы друг с другом.

44
Нейротренинг для мозга и бизнеса: мнение экспертов

Нейротренинг для мозга и бизнеса: мнение экспертов

Не мерзнуть, не чувствовать голод, не бояться, не уставать: человек давно понял, что слушать свой организм полезно, а управлять им - еще полезнее. Не только для здоровья и личного счастья, но и для работы, конкуренции, преуспевания. Аутотренинги, медитации, духовные практики, нейротренажеры - человек преуспел, тайн у мозга почти не осталось. Или нет?

248
Их нравы: особенности работы на зарубежных проектах

Их нравы: особенности работы на зарубежных проектах

Компания «Аплана» помогает с контролем и управлением качеством не только в России. Поэтому один из самых популярных вопросов от новых сотрудников - как попасть на проект с иностранным заказчиком?

198