Препятствия для Big Data или тавтологии в ритейле

Розница – одна из старейших платформ взаимодействия покупателя с продавцом. Ритейлеры использовали ИТ задолго до появления e-Commerce. С развитием технологий торговля перешла на другой уровень. Оборот розничной торговли в России по итогам 2017 года составил порядка 30 трлн рублей (по данным ТАСС).

Скоро сказка сказывается...

Ритейл обращается к новым нишевым технологиям, чтобы получить преимущества и повысить прибыль. Одна из таких технологий - Big Data. По данным IDC, по итогам 2017 года расходы на Big Data в мире составили почти 45 миллиардов долларов.

big_data

Розничная торговля - идеальный кандидат для применения Big Data. Эта отрасль с высокой скоростью генерирует большой объём разнообразных данных: товары, приобретаемые покупателями, различные способы оплаты, используемые тенденции при покупках, факторы принятия решений, стоимость, скидки, качество, доступность и т.д. и т.п. 

Например, WalMart генерирует
2,5 Петабайта данных в час
от транзакций с клиентами. 

Но помимо огромных возможностей для использования Big Data в ритейле, существуют и значительные препятствия, с которыми приходится сталкиваться. 

Но дело само не сделается

Важный вопрос – какие данные собирать и как? Там, где много данных, там же много и «мусора». В ритейле много данных о купленных товарах, способах оплаты, которые могут быть различными для одной покупки. Клиент может использовать для оплаты банковскую карту члена семьи или использовать карту лояльности другого человека. Необходимо правильно идентифицировать человека и правильно сегментировать его поведение.

big_data

Даже у небольшой розницы сегодня есть программное обеспечение для складского учёта, бухгалтерского учёта, POS и если есть CRM. Каждая система хранит данные в определённом формате. Довольно сложная задача - собрать данные из этих различных систем, работающих обособленно, и объединить их для анализа с помощью ETL-процессов. При этом понимание, что это придется сделать, не отменяет проблем при реализации. 

Дружба дружбой, а служба службой

В России необходимо соблюдать 152-ФЗ о персональных данных. В Евросоюзе - GDPR. Задачи по обеспечению безопасности данных всегда актуальны. Несмотря на все принятые необходимые меры, важно также соблюдать согласие клиентов и убеждать их в том, что собранные данные будут использоваться безопасным образом.

Что касается человеческого фактора, то внедрение Big Data, как, впрочем, и других ИТ-технологий, не даст нужной отдачи, если персонал не будет правильно использовать их в своей работе.

big_data

Инструменты Big Data могут помочь извлечь, трансформировать, загрузить и сегментировать данные, чтобы выявить закономерности и тенденции. Но оперативно и правильно использовать эти данные не всегда удаётся. В ритейле тенденции и закономерности меняются особенно быстро. 

Награждение наградами награжденных

Несмотря на некоторые проблемы, возможности Big Data в ритейле огромны. Согласно исследованию HBR, компании, создавшие омниканальный сервис на основе аналитических данных, повысили стоимость акций до 8,5 раз. 

В отчете Oracle утверждается, что ритейлеры могут получить 60%-ный прирост своей операционной прибыли за счет использования больших данных. 

Для каждого вышеуказанного препятствия решение заключается в тщательной, продуманной реализации Big Data с использованием зрелых инструментов и грамотной сбалансированной команды аналитиков и разработчиков. Для нынешних продавцов аналитика больших данных - лучший способ получить представление о тайных желаниях клиента!


02 ноября 2018г. / Индустрия 4.0
1460 | Обсудить в   
Ярослав Макаров
Директор по развитию бизнеса ГК Аплана
7 факторов успеха для внедрения управления инновациями
Решения Индустрии 4.0 - в жизнь
Что такое инновация?
SPA – это не только про баню
5 шагов на пути к управлению инновациями
Единые правила и качество услуг. Грамотная интеграция сервисов
Один ум хорошо, а два лучше - синергия BI и BPM
Дао внедрения СУЗ
Как установить единые правила в информационной системе и повысить качество сервисов для клиентов
Шесть вариантов использования Big Data в ритейле
Сэкономил = заработал: 6 способов снижения затрат с помощью прогнозной аналитики
7 трендов бизнес-аналитики в 2018 году
Стратегия управления бизнес-аналитикой: семь вопросов
О дивный новый мир аналитики бесстрашных клиентов!
Вредные советы (спасибо Григорию Остеру)
Что общего между системой управления знаниями и драконом из «Игры престолов»?
Управлять знаниями? Нет, управлять инновациями!
Система управления знаниями: пять первых шагов
Система управления знаниями: активный поиск и накопление
Заказная разработка – эффективный способ обойти конкурентов


Еще по теме
Роботами мы не станем

Роботами мы не станем

Каждый человек при рождении уже обладает некоторым набором рефлексов, и они не являются осознанными. Развиваясь, человек приобретает всё больше и больше навыков. Единственное вмешательство, которое позволяет сделать нейротренажер, - это более осознанное управление и контроль над теми реакциями организма, которые мы традиционно считали неуправляемыми, автономными.

863
Финансовый автоматизатор и анализатор

Финансовый автоматизатор и анализатор

По результатам опросов 60% финансовых руководителей заявили, что они направят не менее 20% своих финансовых бюджетов на цифровую трансформацию. Рассмотрим четвертую роль, которую финансовые директора могут играть в цифровой трансформации, она заключается в преобразовании собственного департамента (Продолжение).

708
Финдир - советник по операционной модели ИТ

Финдир - советник по операционной модели ИТ

Стремительный рост поставщиков облачных вычислений в этом десятилетии (Amazon, Microsoft, Google и другие) символизирует большой сдвиг в том, где глобальные производственные и сервисные компании выполняют свои вычисления.

690